

EDUCATION

Computer Science (Ph.D.) GPA: 3.94	University of Illinois at Urbana-Champaign	Aug. 2022 – Dec. 2027
Computer Science (M.S.) GPA: 4.0	University of Illinois at Urbana-Champaign	Aug. 2021 – May 2022
Computer Engineering (B.S.) GPA: 3.7	UIUC & Zhejiang University	Aug. 2017 – May 2021
<i>Research Focus: Diffusion, Flow Matching Models, LLM, NLP</i>		

WORK EXPERIENCE

Machine Learning Research Intern, GeHealthcare	May. 2025 – Aug. 2025
<ul style="list-style-type: none">Developed a model-agnostic framework to predict patient mortality using temporal EHR sequences and historical ICD codes in a highly imbalanced dataset.Designed an AI-driven agent to optimize a Retrieval-Augmented Generation (RAG) pipeline with dynamically retrieving similar patient case besides knowledge retrieval.Applied reinforcement learning to refine query generation, creating a custom reward score based on prediction accuracy.Achieved a 34% improvement in AUROC compared to baseline models, demonstrating the effectiveness of adaptive knowledge retrieval in clinical prediction tasks.	
Research Assistant, University of Illinois at Urbana-Champaign Aug. 2023 – Now	

Research Assistant, University of Illinois at Urbana-Champaign	Aug. 2023 – Now
<ul style="list-style-type: none">Designed a two-stage text-to-image generation pipeline that achieves accelerated inference while preserving semantic alignment and visual fidelity.Using a few-step flow-matching student for fast coarse synthesis, followed by a new text-conditioned flow refinement model to recover detail and fidelity, balancing speed and quality.Shortened inference from dozens of diffusion steps to 1–4 coarse steps plus a few refinement steps, preserving semantic alignment and visual quality as measured by standard T2I metrics.	

SKILLS

Programming: Python, SQL, MATLAB

Packages: Pytorch, TensorFlow, NumPy, Scikit-learn, Pandas

Specialties: Diffusion, Flow Matching Models, LLM, Natural Language Processing, Machine Learning

SELECTED PROJECTS

<i>Exploring Virtual Logic Depth for Scaling Laws</i> MIT, UIUC	Feb. 2025 - May. 2025
<ul style="list-style-type: none">Systematically study the parameter-reuse scaling on LLM reasoning and knowledge capacity under controlled protocols.Explored multiple reuse patterns and identified a cycle-repetition scheme that substantially improves reasoning, validated on both synthetic and real-world benchmarks.Achieved a 52% accuracy boost on reasoning tasks and over 100% improvement on the AIME benchmark, demonstrating a new paradigm for scaling reasoning capabilities in LLMs.	

<i>Multi-Stage Probabilistic Generative Super Resolution</i> UIUC	May. 2024 - Jan. 2025
<ul style="list-style-type: none">Propose a novel three-stage pre-training and fine-tuning paradigm that enables the model to effectively learn medical image features under few-shot conditions.Utilizing ControlNet, the MSP-SR framework successfully achieves knowledge transfer from natural image domains to the medical domain.Under the same few-shot setting, MSP-SR surpasses prior SOTA on various medical dataset, especially with 32.2% PSNR improvement and 46.0% lower LPIPS on OASIS dataset.	

SELECTED PUBLICATIONS

- Zhu, R.**, Weston, M. C., Banerjee, A. MSP-SR: Multi-Stage Probabilistic Generative Super Resolution with Scarce High-Resolution Data. *UAI 2025*.
- Zhu, R.**, Beyond Parameters: Exploring Virtual Logic Depth for Scaling Laws, *submitted to ICLR 2026*
- Zeng, Z., **Zhu, R.**, Xia, Y., Zeng, H., Tong, H. Generative Graph Dictionary Learning. *ICML 2023*
- Zhu, R.***, Qi, Z.*., Fu, Z.*., Chai, W.*., Kindratenko, V. Weakly Supervised Two-Stage Training Scheme for Deep Video Fight Detection Model. *ICTAI 2022* (pp. 677-685). *IEEE*.